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INTRODUCTION

There have been a number of studies over the past few years
regarding the problems associated with coupling two helicopters
together in such a way as to 1lift a single load, thus increasing
the load that can be carried with a given helicopter (References
1-5). A specific configuration geometry shown in Figure 1 and
referred to as the twin-1lift system is of interest here.
Preliminary flight demonstrations of this concept described in
Reference 4 have indicated that while the configuration
described here can be flown, the pilot workload is high. A
simplified set of equations of motion were formulated for this
dynamic system, describing what was assumed to represent the most
critical aspect of the dynamics and control of such a system. An
investigation of this reduced system is presented in Reference 1.
Among other results, it was found that the stability of the
system is critically dependent upon the location of the tether
attachment point relative to the center of gravity of the
helicopters and that a fairly rapidly divergent mode is
associated with the attachment point located below the center of
gravity of the helicopter. Further details of this study can be
found in Reference 1.

This report extends these studies and presents the complete
linearized equation of motion for the twin-1ift system about a
hovering trim condition and discusses the features of the

additional modes of motion involved in the complete system that



are not included in the formulation of Reference 1.

Two sets of equations of motion are presented in this
report. Part I presents the equations of motion of the twin lift
system assuming that the yaw angles of the helicopter are
constant and that the helicopters have a specific orientation
relative to the load system. Part Il generalizes these results
to permit each helicopter to have a yaw degree of freedom and
more general geometric characteristics than in Part I. The
derivation of the equations of motion is described in each
section and the equations of motion are presented. It is assumed
that both the helicopters, referred to as the master and slave,
are identical and that the hovering trim condition consists of a
rectangular frame orientation, with the tethers vertical as shown
in Figure 1. Certain simplifications are made in the aerodynamic
derivatives that are used to describe the helicopter
aerodynamics. However it should be evident from the formulation
how to add a more complete aerodynamic description of the
helicopter to these equations if desired. One of the objectives
of this study as well as the earlier one described in Reference 1
was to obtain physical insight into the important features of
this dynamic system and in particular to note how the system
differs from dynamics and control problems of a single helicopter
carrying a single load, a problem that has been exhaustively
studied in the past.

Using an aerodynamic description of the helicopters that

neglects the aerodynamic derivatives that couple the



longitudinal and lateral-directional dynamics it can be shown
that in the case in which the tethers of both helicopters are
equal in length, the symmetry of the system can be used to
decouple the equations of motion of this complex system into
simpler systems which can be used to gain physical insight and
draw analogues with other systems. In particular it is shown
that for the linearized system with the assumptions noted above
and the helicopters oriented initially either with their
longitudinal axes parallel or perpendicular to the spreader bar
that the complete equations of motion presented in Part 11
reduced to the following sets:

The complete sixteen degree of freedom (DOF) system

described in Part II reduces to four simpler systems:

1. Yaw motion of Slave Helicopter (1 DOF)
2. Yaw motion of Master Helicopter (1 DOF)
3. Planar motion equations (7 DOF). This corresponds

to system motion in the plane of the paper in
Figure 1. (Reference 1)
4. Non—Planar Motion equations (7 DOF). This is
system motion out of the plane of the paper in
Figure 1.
1. and 2. will not be discussed further as they are simple first
order systems. The planar motion equations are the system
examined at length in Reference 1. Features of the non-planar
motion are considered in some detail later in the report. It

also can be shown that symmetry can be used to divide the planar




and non-planar motion dynamics into simpler systems. Both the
planar and non-planar systems can be divided into anti-symmetric
and symmetric motions. The anti-symmetric motions involve "in-
phase" motion of both helicopters and are essentially the modes
involved in maneuvering the system from place-to-place. In the
planar case this is a four—-degree-of-freedom system which bears
some similarities to a single helicopter with a sling load as can
be seen from Reference 1. Two symmetric systems are present, one
involving one degree of freedom vertical translation similar to
the vertical translation of a single helicopter. The other
symmetric motion involves two degrees of freedom and essentially
is the same as the dynamics of a helicopter tethered to a fixed
point on the ground (6). The stability characteristics of this
motion are very sensitive to the location of the attachment point
relative to the center of gravity of the helicopter.

The non-planar motion can also be divided into anti-
symmetric and symmetric motions. The anti-symmetric motion (four
degree of freedom) again involves "in-phase'" motion of the
helicopters and translation of the system as a whole, and is
essentially the same as that of a single helicopter carrying a
sling load (7). The sling load is a compound pendulum with the
spreader bar mass and the load mass being the two loads. The
symmetric motion (three degrees of freedom} involves rotation of
the entire system about a vertical axis through the load. The

non—-planar motion is considered in more detail later in this

report.



It is interesting also to note that this division into anti-
symmetric and symmetric modes also indicates a separation of the
control actions. If the pilots of the master and slave
helicopter apply exactly equal inputs system motion occurs only
in the anti-symmetric modes, the system motion is that required
to move the system from place to place. If exactly equal and
opposite inputs are applied to the master and slave helicopters
then only symmetric modes are excited and the total system moves
about a fixed point in space.

In general it may be desirable to consider a system in which
the tether lengths are unequal in which case the decoupling into
symmetric and anti-symmetric modes does not apply. However
studies of the unequal tether case in Reference 1 do not indicate
a strong influence of unequal tether length on the modes of

motion.



NOMENCLATURE

Coordinates used in the development of the equations of

motion are shown in Figures 1-4. Generally the following

subscripts are used to distinguish slave characteristics from

master characteristics.

(g ()
Oy )y

OF

( g

Geometry of Load

(), a( )

h’, H

Masses

My

slave associated quantities

master associated quantities

associated with tether

associated with spreader bar

sum and difference coordinates

spreader bar length, ft

slave tether length, ft

master tether length, ft
displacement of load below spreader bar, ft

slave attachment point - center of gravity

spacing, ft

master attachment point - center of gravity

space, ft

are used in the case of equal slave and

master dimensions, ft

helicopter mass, slugs



M load mass, slugs

L
MB spreader bar mass, slugs
. . 2
ICMB spreader bar moment of inertia, slug-ft
Dimensionless Parameters
. T 1
ZMH
g - B
ML + MB
s - _ lcMB
2
+
(MB ML)L
3
..MM
1~ I
y y
Superscripts
( )« aerodynamic force derivatives in frame axes
Moment derivatives with respect to attachment
point. Velocities of helicopter center of
gravity.
() Stability derivative not divided by mass
oX

or inertia (Xu = 32

The standard notation for stability derivatives is used, e.g.,

1 oM

M = I au
y

1 X

X = o=

MH ou

In this notation moment derivatives are relative to the

helicopter center of gravity.



EQUATIONS OF MOTION: PART I

(Fourteen Degrees of Freedom)

Since the equations of motion for this dynamic system are
quite lengthy, the derivation of a reduced set of equations of
motion is decscribed in this section and then extended to the
general case in Part II. Here the tether attachment points are
assumed to be located at the helicopter’s center of gravity and
the yaw angles of both the master and slave helicopters are
assumed to be zero. That is, the yaw orientation of both
‘helicopters remains constant at an initial orientation in space
which is as shown in Figure 1. In Part 1II, both of these
restrictions on the equations of motion are removed. The
helicopters may be rotated 90 degrees from the orientation in
Figure 1 by interchanging aerodynamic stability derivatives as
noted later (1). Arbitrary initial yaw angles are included in
the latter formulation. Previous studies of a seven degree of

freedom model of this dynamic system are described in Reference

1. This set i1 degrees of freedom is referred to as the planar
case. Motion is permitted only in the plane of the paper in
Figure 1. This section therefore, describes the development of
the equations of motion including motions out of the plane of
Figure 1.

The coordinates used to develop the equations of motion are
shown in Figure 2. The choice of a relative coordinate system is
particularly convenient if a Lagrangian formulation is used. A
space reference frame (Xc, Ys, Zsc) is defined, with X¢ parallel

to the local gravity vector. The following coordinates are

8



selected as degrees

(XS’

®r1,

P81,

eL

&r2,

Ys

8r1

U1

612

Zs)

of freedom:

translational displacements of the slave
helicopter attachment point (center of mass)
with respect to space, zs is parallel to the
local gravity vector and xs is a displacement
parallel to the longitudinal axis of the
slave helicopter. The orientation of the
longitudinal axis of the slave helicopter
remains fixed in space.

Euler angles describing the orientation of
the slave helicopter tether from the G axis
system. &®ri1 is a rotation about the X¢ axis
and 8v1 is the second rotation about the
deflected axis (Y1)

Euler angles describing the orientation of
the spreader bar with respect to space. @®p1
is a rotation about an axis parallel to Xq,
and ¢Ys1 is a rotation about the deflected
axis Zs’.

Euler angle describing the orientation of the
load triangle. 6. is a rotation about the
spreader bar axis Ys where Ys is parallel to
the spreader bar axis.

Euler angles describing the orientation of
the tether to the master helicopter. @®rz is
a rotation about an axis parallel to Xg and
Or2 is a rotation about the deflected axis w?

9




These ten degrees of freedom taken with the pitch and roll angles
of each helicopter om, ¢u, Os, ¢s comprise the fourteen degrees
of freedom of the system. The subscripts M and s refer to the
master and slave respectively.

The displacements of the four masses involved in the system,
the mass of each helicopter My, the mass of the spreader bar Ms
and the mass of the load ML can be written in terms of the
geometry of the sling,

Hi the tether length of the slave helicopter

Hz the tether length of the master helicopter

L the spreader bar length

Y/ the distance of the load mass below the spreader bar

and the rotation matrices

1 0 0
d = 0 cs sé
0 -sd co
[ ce 0 -s8
c = cos
8 = 0 1 0
sS= sin
s8 0 ce
f'cw s¢ 0
v = -s¢y cy 0 :
0 0 1
-

The displacements of each mass are
e

a.) slave helicopter center of mass (attachmei

10



spreader bar.

{Ps} = Ye

4
s

bottom of slave tether
{P.} = {P_} + [0, @ 1"
1 s Tl "T1

spreader bar center of mass

0
T
Pomp? = (P} + [dgy 2] {”L/2§

bottom of master tether

- T
(Pa} = {Pp} + [¥y) 0] {'

0

[ ol =)

master helicopter center of mass (attachment point)

. 0
{Pyd = {Py} + [0g, @p,] 0
2

load center of mass

) T
{Pemp? = {Poypt *+ [0p ¥y @4 {

H

NOOo

The kinetic energy of the system due to translation then can

be written as

=3
(f
N | bt

+
DO ==

small angles are

11

My [P} x (P_}T] +

Mg [{Poyp} x {Poypt

M I{P) x (Py}T]

T 1 . . T
T+ g My [Py} x {Poyp}]

To this must be added the kinetic energy due to the moments of
inertia of the helicopters and the moment of inertia of the

The contributions of the helicopters assuming



1 -2 * 2 1 "2 "2
RH 2 Iy (eM * es) + 2 Ix (¢M * d)s)

It is assumed that both the master and slave helicopter are

identical. The contribution of the moment of inertia of the
spreader bar assuming it to be a slender rod such that Iyy = 0
and Ixx = Izz = Icmus is

_ 1 . 2 * 2
Teg = 2 Icmp [(®py cosipy)™ + Upy]
The potential energy of the system is
vV = —MHg z, - MBg (z-component of PCMB)

- MLg (z-component of P - MHg (z—-component of PM)

CML)

Lagrange’s equation may now be used to develop the equations of
motion. Since a large amount of algebra is involved, MACYSMA was
used to determine the equations of motion. The MACYSMA
formulation treated only the translational kinetic energy terms.
The equations of motion were linearized about an arbitrary
initial geometric configuration of the system assumed that all
initial velocities are zero, that is only the hovering trim state
is considered. Certain simplifications in the kinetic energy
expression arise due to the assumption that all initial
velocities are zero. In this case, the derivative of the kinetic
energy with respect to displacements involves only products of
velocities and thus will be zero in the linearized hover case,

i.e.,

aT
aq

12



The following names were used for the variables in the

MACYSMA program

tt kinetic energy
faitl, o¢ra1, initial value faitlO
fait2, or2

faibi, ¢81

saib2, uUe1

satatl, 611
sitat2, Or:2
sitaf, oL
Other symbols relate directly to the notation above. Thus

MACYSMA is used to form the kinetic energy and then calculate

d_ or
dt ', ’
93

The potential energy derivatives are also calculated. Helicopter
body rotation is uncoupled from this procedure and these degrees
of freedom will give rise to four additional equations. The

spreader bar moment of inertia gives contributions to the ¥s:1 and

®s1 equations

d T | _ .
& 31 57 = Iows 9
a¢Bl
d aT _ “
& 3t ) 7 Iomp Y

13



The effect of the external aerodynamic forces acting on the

helicopter is obtained by calculating the virtual work,

d aL
= (—) - =— = 4@
dt 3§k aql k

where L = T - V

and

The external forces acting on the helicopter are expressed as

Y Z

s s s M’ M’ ™M

Note that these forces must be expressed in gravity axes and not

body axes. The virtual work of the aerodynamic forces is:

SW = Xs 6xs + YS 6ys + Zs 6zs + XM 6xM + YM 6yM + ZM 62M

The displacements of the master helicopter must be expressed in

terms of the coordinates. For small angular displacements:

6x

n
O
x

+
o’

68 + L 6¢Bl - H, 66

M s 1 Tl 2 T2
Syy = Syg = Hy &gy + Hy 60,
zyy = 6z, = L Sbgy — Hy [8y) 66p; + &g Sbp,]
* Hy [8pp 664y + &gy §6q,]

Second order terms are retained in 6z because the vertical
aerodynamic forces Zv and Zs have non zero values in the
equilibrium hovering state. The X and Y forces are zero in
equilibrium. The equilibrium values of the Z forces are denoted

Zvo and Zso. Thus
14



W = (AXs + AX éxs + (AYM + AYS) 6ys + (ZM + Zs) dzs

M)
* (CHjAYy - Hy Zyo @q) 60 + (H)AXy - HyZ\,,04,) 604,
+ (-L ZM) 6¢B1 + (LAXM) GwBl + (0) 69L

+ (HZAYM + HZ ZMO QTZ) 6¢T2 + (—HZAXM + HZ ZMo 9T2) 69T2

The equilibrium values of the vertical aerodynamic forces for the
rectangular equilibrium state where all initial values of the
angular coordinates are zero can be seen by inspection to be

Zyo = ~ & [My +

Zso =~ & My #

Thus the virtual work contributions to the equations of motion

are
xs AXM + AX
Vg AY, + AY_
zs ZMO + zSo + AZM + Azs = - g(2MH + ML + MB) + AZM + AZs
M, + My
®py “H (AYy *+ Zyo @py) = - HyAY, 4 gHy (My 4+ 7 ) %
M+ My
Opy  Hy(8Ky = Zyo Opy) = Hyaky + gy (My + ———) 8q
M.+ Mg
¢B1 "‘L(ZMO + AZM) = gL(MH + ——2——-) - LAZM
by, LAX,
o, 0

15



by

HZ(AYM + ZMO

9 —HZ(AX - 2

T2

Note that some constant

terms on the right hand

M MO

o

6

TZ)

T2)

i

_gH

oMy +

terms appear which will be

side and in addition there

® + H,AY

T2 2°'M

9T2 - HZAXM

balanced by

are

contributions to the spring matrix due to the initial value of

the Z-force.

included in this mode.

forces in a gravity fixed reference frame are:

AX

AY

AZ

"

X u+ X
u

Y v+ Y
v

Z w + Z
W

Only the dominant aerodynamic derivatives are

The perturbations in the aerodynamic

Bl

Al

ec

For the slave helicopter

X
s
s's
z
s
helicop
Xs H2
Vs * HZ
z -1
s

Hy o

16
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The four equations describing the helicopter body motions are

Iy eM = AMM
Ix d)M = ALM
I8 = AM
y s s
Ix M- ALs
where
AM = Muu + qu + MBl B1
AL = va + Lpp + LAl Al

where for simplicity aerodynamic coupling derivatives have been
neglected.
Thus using these results with the output of the MACYSMA

program the equations of motion can be written as in general as,

[M] {x} + (€] {%x} + K {x} = B {u}
where the fourteen motion variables are:
— T
{x} = [xg2¥gu25, 00150070 0p7 Uy Op g0 Opgs Oyr Og s by O]
and the controls are:

_ T
{u} = {Byg» Byys Aygr Ay 8gg0 9op]

The [M], [C], [K] and [B] matrices can be obtained for this
case from the more general matrices given in the next section.
The equations have been normalized by mass and inertia. With the
exception of the 8L equation, the first ten equations have been

divided by the helicopter mass (My). The load coordinate (6v)

17



equation is divided by the load mass (M.). The pitch and roll
moment equations are divided by the respective moments of inertia
of the helicopter.

The following nondimensional quantities are introduced:

p = —EEH__L_’ ratio of spreader bar plus load mass
H to total helicopter mass
Mp
B = -—m—, ratio of spreader bar mass to load
M. + M
L B mass plus spreader bar mass.
Note that
M
L
(1 -8) = g
ML + MB
M
(p) (1 - B) =
ZMH

It can be noted from the M, C, and K matrices that the equations
of motion for the complete fourteen degree-of-freedom system
decouple into two seven degree-of-freedom systems, the planar
dynamics studied in Reference 1 associated with the following

degrees of freedom:
(x ) = [¥_, 2., bpys bnys Gros b &_]7
P s’ “s’ "T1’ "B1l’ T2’ "M’ s
The remaining coordinates describe what will be referred to as

the non-planar motion. It is associated with the following

degrees of freedom

18




N T
{xypt = Ixgs 8p9s g1y 85, 05, By, 6]

Note that a slightly different notation is used in Reference 1

for the coordinates.

19



EQUATIONS OF MOTION: PART 11

(Sixteen Degrees of Freedom)

The previous section described in detail the derivation of
the equations of motion for the twin 1lift system. The
formulation in Part I is restricted to the tether attachment
points of both helicopters located at their respective centers of
gravity. In addition the initial yaw orientation of each
helicopter is assumed to be either perpendicular or parallel to
the load suspension frame and the yaw angles are assumed to
remain zero throughout the ensuing perturbed motion. The
formulation is given for in Part I for the longitudinal axes of
the helicopters perpendicular to the spreader bar in the initial
state. It can be seen from Part I that the case in which the
helicopters are rotated 90° is readily treated by interchanging
the aerodynamic stability derivatives.

In this section, the formulation is extended to include

vertical spacing between the tether attachment points and the

centers of gravity of each helicopter. This dimension was shown
to have an important effect on the stability of the twin 1lift
system in the planar case. In addition, the initial orientation
of the master and slave helicopters with respect to the load
frame is arbitrary as shown in Figure 3. The following
quantities are added in this section:

Yso trim or initial yaw angle of slave helicopter relative

to frame (spreader bar)
WMo trim or initial yaw angle of master helicopter relative

to frame (spreader bar)
20
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Adbs change in yaw angle of slave helicopter measured from
initial orientation of slave helicopter.
Abv change in yaw angle of master helicopter relative to
initial orientation of master helicopter.
The equations of motion are formulated such that it is assumed
that the yaw motion of the master relative to the slave
helicopter,

Ay

MR = A%y T Ay

is a small quantity. The change in yaw angle of the slave
helicopter is not restricted to be small.
Two equations of motion are added to the dynamic system

described in Part I.

1t
z

Aws - Nr Aws 5 )

and

n
Z
O

AwM - Nr AwM

These modifications to the equations of motion can be
incorporated into the equations of motion in the following way.
A frame axis system (Xr, Yr, Zr) is added which moves about Zr
with the change in yaw angle of the slave helicopter as shown /
Figure 4. Within the framework of the small angle assumptiog'
made in the linearization of the equations of motion, Ys1 c8g
interpreted as the rotational displacement of the spreader
relative to space. Note however, that the other angular
coordinates describing the system motion rotate with Ays

helicopter body axes are now misaligned from the frame ¢

21



Figure 4, the relative spreader bar motion is also shown. Thus
to summarize:

(Xr, Yr, Zr) Frame axes rotate with AYs. The frame motion

Qariables defined in Part 1 are perturbations
relative to this axis system. (Figure 4)

(Xss, Yss, Zs) Slave helicopter body axes. Misaligned from
frame axes by Yso and rotate with Ags and
thus remain in a fixed orientation relative
to the frame axes.

(XM, Ysm, Zem) Master helicopter body axes. Misaligned from
frame axes by Ymo and rotate with Adm. Thus
it is assumed that in the disturbed motion
that (AYm - Abs) is a small quantity.

The equations of motion are now modified to account for the
misalignment of the helicopter body axes and the frame axes. The
stability derivatives of the helicopter are given in terms of
velocities and forces oriented in the body axis directions. Note
that these are not true body axes as they do not rotate with
either the pitch or roll angles and thus the thrust vector must
be accounted for in the expressions for the longitudinal and
lateral aercodynamic forces. In addition, the equations must
account for the fact that the tether attachment point is being
used as the reference frame for the translational velocities.

First, the transformation of the aerodynémic derivatives is
considered and then additional inertial and gravity terms due to
the spacing between the attachment point and the center of

gravity of each helicopter are considered. 1In this formulation
22



only the dominant aerodynamic derivatives of the helicopter are
considered. The formulation indicates how additional terms may
be included. It is assumed that the following aerodynamic

derivatives characterize the helicopter:

The following control derivatives are included

Al ? NGTR’ Zoc

X , M

B1 Y

L

Bl * "Al°

The velocities of the helicopter center of gravity expressed in
terms of attachment point velocities (ur, vr) and attachment

point, center of gravity spacing (h’) are:

The final formulation permits the spacing between the attachment
point and the center of gravity to be different on each
helicopter with the subscript 1 referring to the slave and the
subscript 2 referring to the master.

The aerodynamic forces in the helicopter body/gravity axes

are:

AXB = qu + XBl B1 - TOS

AY, = va + Y

B Al

The body motion equations are about the helicopter center of

gravity are:

L]
@®
H
=
=1
+
<4
@
+
=
==}



IX¢ = va + Lp¢ + LAl 1

The moment equations will be retained in body axes and the

A

force equation will be transferred to frame axes.

AXF = AXB cosy - AYB siny
AYF = AYB cosy + AXB siny
up = ks cosy + &s siny
Vp = 95 cosy - ks siny

In the force equations, the effect of the spacing between
the attachment point and the center of gravity can be neglected.
This is consistant with neglecting the stability derivatives Xq
and Yp.

Thus using the above transformation

% . X . .
AXF = Xu X ot Xv vt (XBlcosw) B1 - (YAlslnw) Al
+ To(—9 cosy — ¢ siny)
aY, = ¥Y¥ %+ v ¥y 4 (X .siny) B. + (Y,.cosy) A
F ™ 'u %s v Vs p1s1m 1 A1¢° 1
+ To(—e siny + ¢ cosy)
where
X 2 . 2
Xu = Xu cos ¢ + Yv51n 17
X* = (X -Y) ing sy
v - u v) si co
Y* = (X - Y ) sin{y cosy
u u v
x 2 . 2
Yv = Yv cos U + Xu sin W

24



If it is assumed that Xu = Yv then

X* = Y* = X
u

X =Y

u v
X X
v u

This is a reasonable simplification and is used in equations
of motion presented later.

The linearized form of the aerodynamic forces is obtained
by letting @ = Yso for the slave helicopter and ¢ = Ymo for the
master helicopter terms.

To account for the spacing between the attachment point and
the helicopter center of gravity, the moment equations are

written about the attachment point. Thus the stability

derivatives about the attachment point are denoted

*_ - h? ’
M =M h AXB
L*=L+h’AY’
B
Note that AXB’ and AYB’ are body axis forces and do not contain

the thrust vector.

The moment equations for the helicopter written about the

attachment point are:

[(I_+h2M,] 6-hMia~Whes=u"
y H H
[I +hoM.] &+hMv~-wWho-=L"
X H H

The following terms are added to the equations of motion to

account for the displacement of the helicopter center of gravity

25



from the attachment point. The inertial terms are:

Ax El " “ b " L]
s . .

(—ﬁ;) —h2 [costOGM + 51ano¢M] —hl [coswSo es + slnwso¢s]
AYS , . " , " "
(ﬁ;_ —h2 [costo¢M - 51n¢M08M] +h1 [coswsocbS - s1nwsoes]

(o11 h: H,(-cosd, &, + sinw, 8 )

My 2 T117C%%%o% S10%6M

811 . "

(ﬁ;—) h2 Hl(—-costoeM - s1ano¢M)

(fﬁl) -h2 L (cosy é + sinuy ; )

My 2 Mo M %90 %M

(EZZ h? H, (cosu & - siny & )

MH 2 72 Mo ™M Mo ™M

eT2 ” "

—_— 9 .

(MH h2 H2 (costoeM + 51ano ¢M)

eM MH L . (1]

(T—) (h2 f;) {_xs Costo T Ys 51ano + Hl(—eTlcosto

*oopy sinby )+ Hy(Bg, cosy, = bp, sindy)
* L(-dp) cosdy,)  + hy8y)
Y Mg, | . .
(T; (h2 T;) {—x551ano + Vs Costo + H1(_8T1 s1ano
“bpy cosdy,) * Hy(Bgy sindy, + gy cosdy,)
* L(=wgy sindy,)  + hy o)

es MH o " "
— y = - - : 2

Iy hl Iy { Xs coswso Vs Sln"bso + hl 85}

26



©
=

/)]

s _H —._ . " s "
x h1 IX { xs Slnll’so * Vs Coswso + hl ¢s}

7

In addition the gravity terms must'be resolved as shown in
the equations of motion and the following terms added to the body

moment equations:

8 M

M _ » _H
I g hy, 7 8y
y y

Ml C e n B,
I g T %M
X X
8 M

_5 _ , _H

T g hy 7 85
y v

o M

_s _ , _H
i g hy 7= o
X X

Introducing these terms and the resolution effects for helicopter

orientation as noted leads to equations of motion or the form

[M] x + [C] % + [K] x = [B] u

where
x = {xgs Vg 25 Oy Bgps Opps Upys Bpy Ogns Bp9s By 8
T
¢M’ ¢S’ dJM’ ws}
u = {B B A, , A 0 6 s 6.0 )7
1ls’ 1M’ 1s’ 1IM* “e¢s’ “cM’ "TRM’ “TRs

The system is described by sixteen degrees of freedom and there
are eight controls. The matrix elements are given on the
following pages. The yaw moment equations are gien in the text

and not included in the matrices. The equations of motion for

27



the simpler case described in Part I are obtained by choosing Wso

= UMo = 0, or Yso = Ymo = w/2, and eliminating the yaw moment

equations.
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NON-PLANAR MOTION

It can be seen from the equations of motion developed in the
previous sections that the complete equations of motion for the
twin 1ift system decouple into independent sets of equations of
motion if the lateral-longitudinal coupling terms due to
aerodynamic stability derivatives are neglected in the
helicopter models and the initial yaw angle of each helicopter is
either 0 or 90" (longitudinal axis of the helicopters
perpendicular or parallel to the spreader bar).

The uncoupled sets of equations of motion involve the
following degrees-of-freedom if the initial orientation of the
helicopters is such that their longitudinal axes are
perpendicular to the frame (Ymo = thso = 0).

Planar Motion (seven degrees of freedom)

- T
{Xp} - {yS’ zsi ¢T1’ ¢B1’ ¢T2’ d)M) d’s}

Non—-planar Motion (seven degrees of freedom)

i} T
txypl = {xgr Opys Opps Ugps 8p, By, 0.}

The other two degrees of freedom, the yaw angles of each
helicopter are uncoupled. If the initial yaw angles are 90°,
then the pitch and roll angles are interchanged in the degrees
freedom of the two cases.

The planar motion has been investigated extensively and
results of this investigation are presented in Reference 1.
this section the basic dynamics of the non-planar case are

examined. The same physical parameters are used as in Re
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1. These are listed in Table I. The helicopters used in the
example correspond nominally to the UH-60, Blackhawk.

It was noted in the studies of the planar motion that if the
tether lengths are equal (H = Hi = Hz) and the attachment point
center of gravity spacing is the same on both helicopters, then
the dynamic system can be further subdivided into sets of
symmetric and anti-symmetric motions and considerable insight
gained regarding the dynamics of this complex system. The anti-
symmetric modes involve the two helicopters moving "in-phase" and
are essentially the modes involved in translating the entire
system laterally, i.e., in the plane of the paper in Figure 1.
The symmetric modes involve essentially "out-of-phase” motion of
the two helicopters with the load stationary and are equivalent
to those of a single helicopter tethered to a fixed point. See

Reference 1 for additional discussion.

A similar division or decoupling of the modes can be made in ‘.'.
the non-planar case. Again using the terminology anti—symmetric/
modes to refer to the case in which the two helicopters move "irs
phase”, the following coordinate relationships are involved: //
Anti-symmetric motion:

X 4 8.,.= ©

s T1 ©

L’ eMze’(lel:o)

T2’ s

This is a four degree of freedom system. The equations o
are those of a helicopter with a sling load that acts 1i
compound pendulum (7?. Figure.5 shows the geometry of

motion.
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Symmetric motion:

Op1 = 7 Oq9» 8y s L

wBll
This is a three degree of freedom motion that involves only
rotation of the system about a vertical axis through the load,
spreader bar center of mass as <i:wn in Figure 6.
The next section shows how the equations are decoupled by

the introduction of new coordinates.

Decoupling the Equations of Motion (Non-Planar case)

The equations of motion for the non-planar case can be

written as

(M) (kyp) + (€] {yp) + (K] {xp) = [B] {u} (1)

where

T
, 0 v 8] (2)

S

txgpl = (%5 Opps Opps Ugys 67, 8
The matrices [M], [C], [K] and [B] are given following this
section for this reduced degree of freedom case.

The case in which the tethers are equal (H = Hi = Hz) is
considered and a new set of coordinates similar to those used in
the planar case is introduced to decouple the equations. The
decoupling procedure is as follows.

Noting that the translational displacement of the master

helicopter can be written as
Xy = Xg + H(8py) = 675) + Lug, (3)

This coordinate is introduced and sum and difference coordinates
are defined:
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Ix = — Ax = xM - xs
es + eM
0 = ——5— A0 = 8y, - O (4)
6 + 8
Tl T2 _ _
%8p = 2 885 = Opp = Ogy

The load displacement 6. is chosen as the seventh coordinate.
The spreader bar yaw motion (1 can be eliminated as a motion

variable, using the equation for xm given in equations (3),

Sum coordinates are associated with the anti-symmetric motion and
difference coordinates are associated with the symmetric motion.
The pitching moment equations for the master and slave

helicopters can be written as

. M M M

" X. % X » My o My w H X
e - — _ _a ) _o _ y _R -

M~ MyFm T Moy — b i, *u h T, 6y - &h7 7 8y = MpyBiy

(5)
M M M

SRR S SN SO : i ,2 "H+ ., H X

s M Xs M % h Iy Xs ¥ h Iy 9s gh Iy es - MBlBls

Sum and difference equations are obtained by adding and sub-

tracting these equations.
" * M " M M
ze - M*Zk* - M*Ze -h’ . Tx + h’2 H
“ d I y y
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. . M " M M
a6 - M¥ax* - m*ae -n0 A ax +
u q I
Yy y y
(7)
Note that the pitching moment derivatives are expressed with
respect to the tether point. In order to reform the other five
equations it is convenient to introduce the following set of
additional coordinates which describe the linearized

displacements of the centers of mass of the spreader bar and

load, and the master helicopter tether point.

- _ = _ ’
Xy = Xg H AGT + LwBl » Xy Xy h eM
xo = x_ + Ho,, + 2y X o x_ -n' e (8)
B~ *s Tl 2 YB1 ¥*s T *s s
X. = x_+ H ® + L v + Z6
L S T1 2 "Bl L

The equations of motion in terms of these coordinates are:

X equation,

" [ " " _ — . * . * _ s [
MHxs + MHXM + MBXB + MLxL Xu(xs + xM) + To 238 h MH 20

_ (9)

= xBl ZZBl
eTl equation divided by H
' " " - b 4 ML + MB [
- S u b _ ’
MpXy + Mpxp + Mpx; = X &y + g(———) 8y, + T 6y - h'My 8y
_ (10)
= Xp1BymM

wBl equation divided by L
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" Temp .

" —]; “ “CMB _ _ ,
Mpxy + 5 (Mpxp + Myxp) + =77 by = Xyxy + T 0y = h'My
= Xg1Bim
eL equation divided by ZML
;L + g eL = 0
GTZ equation divided by H
M. + M
o . X L B _ , " - .3
MHxM + XuxM + g( 5 ) 9T2 To GM + h MHOM = -X
Noting that
-1 H
wBl =1 Ax + I AeT
xB - xL = ZGL
Adding the eTl and eTz equations (10 + 13)

MBxB + MLxL -+ g(ML + MB) ZOT =0

Adding the wBl and © equations and multiplying by 2,

T2

w“ 21 "
MoX, + M x + —MB

B¥B XL I *g(Mp + Mp) 8pp = 0

Bl T2

(12)

B151M
(13)

(14)

(15)

(16)

It may be noted upon comparing equations (15) amd (16) that if

the moment of inertia of the spreader bar about its center of

mass is neglected then

Opg = (264p)

implying that eTl = 6T2, that is, the two tether angles
are equal if the spreader bar inertia is neglected. 1In
case, one motion variable becomes redundant as does one

of motion. xs and xL can be expressed as from (4), (8)

as: -
38
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xp B Ix + H Z6,
(17)

X, = Zx + H ZGT + zeL

The sum coordinate equations (anti-symmetric equations) are
formed from the xs equation (9), and the load equation (12), the
sum pitching moment equations (6) and the (811 + 8r2) equation
(15). Note that these substitutions transfer the pitching moment
derivatives to the center of gravity. The anti-symmetric systenm

equations of motion are:

" _ ° * _ Y o — -
Zx qux h’se + g(1 + p) =8 gpzeT = XBIZBl
. X " . B
- MuZx + X8 - que + eygp(ze - ZeT) = MBIEB1
" (1l [1] ( 18)
Tx + HzeT + ZeL + geL = 0
- gZeT + BzeL + geL =0
¢ X
Sx - h'Ze - Zx = 0

The difference coordinate equations (symmetric mode equations)
are obtained by subtracting two times the Y1 equation from the
Xs equation, the difference moment equation, and a combination of

the Br1, B8t2, and Us1 equations. The symmetric system equations

of motion are:

113 _ . * s " - -
Ax Xqu + h’A8 + g(1 + p) Ae gy AeT = xBlABl
. X " : _
- Mqu + A8 Mqu + eygp(AB AeT) = MBlABl
SA% + GHABT + gA?T =0 (19)
s *
Ax - h'AB - Ax =0

Thus the new coordinates invoved in these uncoupled sets of
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equations of motion are:

XNP,AS o {Zx, Zo, Z8

o T

T’ L}

_ T
Xyp,s = (8&x, 48, Ao}

The parameter 6 is a non-dimensional expression of the spreader

bar moment of inertia. If the spreader bar moment of inertia is
equal to zero, 6§ = 0, and the last equation in the symmetric
case gives A0t = 0 and the symmetric set reduces to a two degree

of freedom system.

Note that x refers to the displacement of the tether
attachment point while x* refers to the helicopter center of mass
displacement. The characteristics of these two systems are now
considered.

Anti-symmetric Modes

It can be noted that the anti-symmetric equations (18) are
the equations of motion of a helicopter coupled to a sling load
which is a compound pendulum. The parameter B represents the
ratio of the two supported masses, the spreader bar mass and the
load mass. In the limit of no spreader bar mass (B = 0), ZXor =
8L, the load equations of motion reduce to those of a single
pendulum of length (H + Z). Comparison with the planar anti-
symmetric equations of motion shows that for h’ = 0, Z = O (load
on spreader bar) and 8 = 0, the equations of motion are identical
if the following interpretation is made.

’ — = -
Xp H(ZGT z9) H(eL z0)

The coupled frequencies of the double pendulum system can be
determined from the characteristic equation of the two degree of
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freedom system for Xo6r, 6L. The characteristic equation of this

system is,

__H_ZL__S4+82+______&._:0
g(H + 2) (H + 2Z)
When B = 0 (no spreader bar mass) there is a single frequency
2 _ g
“so T H + 2

and when B - 1 (no load mass) there are two frequencies

e
T

2 g 2 _ g
H @ Z

Figure 7 shows the variation of these uncoupled frequencies with
B. At the nominal value of B, with load (B = .054) the two

frequencies are:

msl .826 rad/sec

Wgo 8.16 rad/sec

There is a wide variation in one of the frequencies associated
with the load as the load is reduced to zero (8 = 1.0).

The anti~symmetric equations of motion are those primarily
associated with maneuvering the system from place to place. The
complete system involves these two sling modes coupled to the
helicopter dynamics. For the nominal load (B = .054) the high
frequency (wsz) associated with the sling is only weakly coupled.

Symmetric Modes

The symmetric motion as described by equations (19) show as
noted above that if the spreader bar inertia distribution is
neglected then 6 - 0 and A8r = 0 indicating that the tethers
remain vertical throughout the motion in this limit. The tether

cable tension provides a restoring moment as indicated by the
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equations of motion. With the spreader bar inertia included
there is an angular oscillation associated with the spreader bar.
The frequency of this motion uncoupled from the helicopters is

obtained from the last of equations (19):

o2 - & . 3¢
Y Hé HB
where
5 = 4ICMB - B
- 2 3
(MB + ML)L

The nominal value of B with load is .054 and therefore with H =
13.25 ft, this frequency 1is:

mw = 12.07 rad/sec

The spring in this motion is tension in each tether. Since this
frequency is high compared to the helicopter dynamics it is
probably quite a good approximation to determine the influence of
the spreader bar inertia on the modes associated with the
helicopter dynamics by using a quasistatic approximation.

= _ & - _ 2
Ax = 3 AGT = Hmw AeT (20)

If the entire system is moving at a frequency w, then the

differential tether angle is

Thus the tethers tend to remain relatively near vertical as
indicated by the limit 6 -+ 0, and the spreader bar follows the

helicopter motion, i.e.,
42



- &x 42 Ax
bgy = ¢ (1 + (g
The equations of motion assuming quasi-static bar motion are (B

<< 1) obtained from equations (19) and (20),

(1 + 6p) Ax - X AkY - h*A® + g(1 + p) A8 = X_, AB (21)
u Bl 1
“ L X " ¢ -
eyéqu - Mqu + A8 - Mqu + eygp AB = MBl AB1
Thus fully loaded with & = .018, p = .43 the effect quasi-static

tether rotation, proportional to 68p, on the helicopter modes is
quite small. With no load, p is very small and it would also be
expected that the coupling between the angular motion of the
spreader bar and the helicopter motion is weak. Note that the
uncoupled frequency of the spreader bar motion varies
significantly with locad due to the tension variation as shown in
Figure 8.

The limiting mode shapes in the symmetric motion with
variation in spreader bar inertia are shown in Figure 9. It also
can be seen that in the limit of very large spreader bar inertia,
Ax = H A6t and the anti-symmetric equations become identical to
the symmetric planar case. That is, the spreader bar tends to
remain fixed in space and a divergent mode will occur for the
attachment point located below the center of gravity of the
helicopter. This limit can be readily seen by changing
coordinates in the difference equations replacing A6t by ¢s1.
However the actual system will tend to be far from this limit for
the physical parameters typical of this system.
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In the practical case where the non-dimensional parameter
measuring the spreader bar inertia (6) is small the character-
istic equation for the anti-symmetric coupled motion, neglecting
6p terms in equation (21), which is equivalent to assuming that

the tethers remain vertical is,

(s) (s - Xu) (s - Mq) +g(l + p) M+ eygu(s - X)) =0

For €y positive, there is a stabilizing tendency, i.e., since in
this 1limit the tethers are vertical an effective attitude
stability is provided by tether tension acting at the attachment
point below the center of gravity of the helicopter. Placing the
attachment point above the center of gravity acts like an
unstable attitude feedback. This stabilizing trend 1s opposite
to that shown for the planar symmetric case in Reference 1.
Figure 10 shows numerical values for the modes of motion for
the non-planar system with load (the symmetric and anti-symmetric
modes) as a function of tether attachment point location relative
to the helicopter center of mass. The uncoupled helicopter modes
for this sample calculation based on the parameters in Table I
are —-.82 and +.172 + .572i. The destabilizing effect of locating
the attachment point above the center of gravity can be seen from
the figure. The movement of the complex pair is very similar to

that obtained with attitude feedback.
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TABLE I

NUMERICAL VALUES OF SYSTEM PARAMETERS

Helicopter Mass MH = 435 slugs
Load Mass MH = 353 slugs
Spreader Bar Mass MB = 20 slugs
Slave Tether H1 = 13.25 ft
Master Tether H2 - 13.25 ft

68.9 ft

Spreader Bar Length L
Load distance below spreader bar Z = 34.5 ft

Tether Attachment point/CG spacing h’ = 3.5 ft (nominal)
Helicopter moment of inertia in pitch Iy = 43,000 slug ft2

Helicopter Stability Derivatives (referenced to CG)

x = -,0602 sec_1
u
M = -,415 sec_1
q
M, = .00538 (ft-sec) !

Non-dimensional parameters:

M.+ M
o= —gﬁ———i = 0.43
H
M
B
B = = .054
N+ M
5 - 41omp ) Mg - o1g
2 (M, + W)

(uniform mass distribution)
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SUMMARY

A full set of equations of motion for the twin lift system,
linearized about a hover trim condition have been derived and
presented. It is shown that this full set of equations of motion
decouples into simpler sets of equations of motion if the
aerodynamic coupling derivatives of the helicopters are
neglected. One of these decoupled sets of equations of motion
(referred to as the planar set) was studied at length in
Reference 1. The other decoupled set (referred to as the non-
planar set) is examined here. It is shown that when the
geometric configuration of the twin-1lift is symmetric that a
further decoupling is possible into anti-symmetric and symmetric
sets of equations. One set of these reduced equations of motion
referred to as the anti-symmetric set is directly equivalent to
the longitudinal motion of a single helicopter with a sling load.
The second set, referred to as the symmetric set corresponds to
rotation of the entire system without load motion. As in the
case of the planar symmetric motion, the location of the tether
attachment point influences the stability of the non-planar
symmetric mode. The trend is opposite however in the non-planar
case in that an attachment point below the helicopter center of
gravity gives a favorable effect on the stability. The effect is
not as strong however as the unfavorable effect on the planar

symmetric mode shown in Reference 1.
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